Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines

نویسندگان

  • Dmytro Korenkevych
  • Yanbo Xue
  • Zhengbing Bian
  • Fabián A. Chudak
  • William G. Macready
  • Jason Rolfe
  • Evgeny Andriyash
چکیده

Quantum annealing (QA) is a hardware-based heuristic optimization and sampling method applicable to discrete undirected graphical models. While similar to simulated annealing, QA relies on quantum, rather than thermal, effects to explore complex search spaces. For many classes of problems, QA is known to offer computational advantages over simulated annealing. Here we report on the ability of recent QA hardware to accelerate training of fully visible Boltzmann machines. We characterize the sampling distribution of QA hardware, and show that in many cases, the quantum distributions differ significantly from classical Boltzmann distributions. In spite of this difference, training (which seeks to match data and model statistics) using standard classical gradient updates is still effective. We investigate the use of QA for seeding Markov chains as an alternative to contrastive divergence (CD) and persistent contrastive divergence (PCD). Using k = 50 Gibbs steps, we show that for problems with high-energy barriers between modes, QA-based seeds can improve upon chains with CD and PCD initializations. For these hard problems, QA gradient estimates are more accurate, and allow for faster learning. Furthermore, and interestingly, even the case of raw QA samples (that is, k = 0) achieved similar improvements. We argue that this relates to the fact that we are training a quantum rather than classical Boltzmann distribution in this case. The learned parameters give rise to hardware QA distributions closely approximating classical Boltzmann distributions that are hard to train with CD/PCD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning using quantum Boltzmann machines

We investigate whether quantum annealers with select chip layouts can outperform classical computers in reinforcement learning tasks. We associate a transverse field Ising spin Hamiltonian with a layout of qubits similar to that of a deep Boltzmann machine (DBM) and use simulated quantum annealing (SQA) to numerically simulate quantum sampling from this system. We design a reinforcement learnin...

متن کامل

Consistency of Pseudolikelihood Estimation of Fully Visible Boltzmann Machines

A Boltzmann machine is a classic model of neural computation, and a number of methods have been proposed for its estimation. Most methods are plagued by either very slow convergence or asymptotic bias in the resulting estimates. Here we consider estimation in the basic case of fully visible Boltzmann machines. We show that the old principle of pseudolikelihood estimation provides an estimator t...

متن کامل

Leveraging Adiabatic Quantum Computation for Election Forecasting

Accurate, reliable sampling from fully-connected graphs with arbitrary correlations is a difficult problem. Such sampling requires knowledge of the probabilities of observing every possible state of a graph. As graph size grows, the number of model states becomes intractably large and efficient computation requires full sampling be replaced with heuristics and algorithms that are only approxima...

متن کامل

Notes on Boltzmann Machines

I. INTRODUCTION Boltzmann machines are probability distributions on high dimensional binary vectors which are analogous to Gaussian Markov Random Fields in that they are fully determined by first and second order moments. A key difference however is that augmenting Boltzmann machines with hidden variables enlarges the class of distributions that can be modeled, so that in principle it is possib...

متن کامل

Accelerating Deep Learning with Memcomputing

Restricted Boltzmann machines (RBMs) and their extensions, often called “deep-belief networks”, are very powerful neural networks that have found widespread applicability in the fields of machine learning and big data. The standard way to training these models resorts to an iterative unsupervised procedure based on Gibbs sampling, called “contrastive divergence”, and additional supervised tunin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.04528  شماره 

صفحات  -

تاریخ انتشار 2016